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Abstract—This paper work mainly deals with design and analysis of 
different Flip-Flops circuits for eliminating the redundant switching 
activity. These Flip-Flop circuits are simulated to evaluate their 
performance parameters in terms of total power dissipation, speed, 
and glitches at the output. 
The logic style of the circuits used in the Flip-Flop’s circuit 
architectures is based on CMOS process model. For any timing 
element circuits, reducing the speed and power dissipation are the 
important constraints. By changing the size of the transistors and 
reducing the transistor count of the circuit the delay, the dynamic and 
leakage power dissipation can be reduced. 
Here we are comparing these proposed circuit designs by various 
author which produce the Flip-Flop outputs simultaneously with full 
output voltage swing. The NMOS and PMOS transistors are added to 
the basic circuits to alleviate the threshold voltage loss problem 
commonly encountered in pass transistor logic design and reducing 
the redundant switching activity. 
 
Index Terms: Timing element, flip-flop, Switching activity, Low 
power, High speed, very large scale integration (VLSI). 

1. INTRODUCTION 

The D flip flop receives the destination from its ability to hold 
data into its internal storage. This type of flip flop is 
sometimes called a gated D latch. The CP input is often given 
the designation G to indicate that this input enables the gated 
latch to make possible data entry into the circuit. 

The binary information present at the data input of the D flip 
flop is transferred to the q output when the CP input is 
enabled. The output follows the data input as long as the pulse 
remains in its 1 state. 

When the pulse goes to 0, the binary information that was 
present at the data input at the time the pulse transition 
occurred is retained at the Q output until the pulse input is 
enabled again. The characteristic table for the D flip flop is as 
shown in fig. 1 it shows that the next state of the flip flop is 
independent of the present state since Q(t+1) is equal to input 
D whether Q is equal to 0 or 1. This means that an input pulse 
will transfer the value of input D into the output of the flip-
flop independent of the value of the output before the pulse 
was applied. 

The characteristic equation shows clearly that Q(t+1) is equal 
to D. 

Q(t+1)=D 

Table 1: Characteristic Table of DFF 

Q(t) D Q(t+1) 
0 0 0 
0 1 1 

1 0 0 

1 1 1 

1.1 MASTER SLAVE D FLIP FLOP: 

A master slave flip is constructed from two flip flops. One 
circuit serves as a master and the other as a slave, and the 
overall circuit is referred to as a master slave flip flop. The 
logic diagram of a D master slave flip flop is shown in fig 1. It 
consists of- 

A master flip flop, 

A slave flip flop, and 

An inverter. 

When clock pulse CP is 0, the output of the inverter is 1. since 
the clock input of the slave is 1, the flip flop is enabled and the 
output Q is equal to Y, while Q’ is equal to Y’. the master flip 
flop is disabled because because CP=0. 

When the pulse becomes 1, the information then at the 
external D input is transmitted to the master flip flop. The 
slave flip flop is isolated as long as the pulse is at its 1 level, 
because the output of the inverter is 0. 

When the pulse returns to 0, the master flip flop is isolated, 
which prevents the external inputs from affecting it. The slave 
flip flop then goes to the same state as the master flip flop. 
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DFF. Energy efficiency of this PPI-DFF is 22–117% better 
than that of the other DFF’s. Compared to the existing low-
power DFF [4], our PPI-DFF uses 40% less energy. This may 
result in a 30–40% reduction in the overall energy 
consumption of control logic. 

Though the low-area DFF uses up to 33% fewer transistors, 
the internal voltagecontention consumes up to 122% more 
energy than the rest of DFF’s. Compared to a conventional 
DFF, a low-power and a push–pull DFF improve power 
dissipation by 1% and delay by 31%, respectively, but end up 
with a comparable energy efficiency. 

REFERENCES 

[1] Blue Lightning Technology Preview, IBM, 1993. 
[2] M. Johnson, Superscalar Microprocessor Design. Englewood 

Cliffs, NJ: Prentice- Hall, 1991.  
[3] N. Weste and K. Eshraghian, Principles of CMOS VLSIDesign: 

A Systems Perspective. Reading, MA: Addison-Wesley, 1993. 
[4] UmingKo and Poras T. Balsara, “High Performance and energy 

efficient D FlipFlop circuits”, IEEE Trans. On Very Large Scale 
Integration (VLSI) Systems, VOL. 8, NO. 1, Feb. 2000 

[5] T. J. Chaney and C. E. Molnar, “Anomalous behavior 
ofsynchronizer and arbitercircuits,” IEEE Trans. Comput., vol. 
C-22, pp. 421–422, Apr. 1973. 

[6] H. J. M. Veendrick, “The behavior of flip-flops used 
assynchronizers and prediction of their failure rate,” IEEE J. 
Solid-State Circuits, vol. SC-15, pp. 169–176, Apr. 1980. 

[7] C. L. Portmann and T. H. Y. Meng, “Metastability inCMOS 
library elements in reduced supply technology scaled 
applications,” IEEE J. Solid-State Circuits, vol. 30, pp. 39–46, 
Jan. 1995. 

[8] F. Rosenberger, C. Molnar, and R. Dutton, “Comments,with 
reply, on `Metastability of latch/flip-flop’ ,” IEEEJ. Solid-State 
Circuits, vol. 27,pp. 128–130, Jan. 1992. 

[9] J. Hohl, W. Larsen, and L. Schooley, “Prediction of 
errorprobabilities for integrated digital synchronizers,” IEEE J. 
Solid-State Circuits, vol. SC-19, pp.236–244, Apr 1984. 

[10] G. Gerosa, S. Gary, C. Dietz, D. Pham, K. Hoover, J.Alvarez, 
H.Sanchez, P.Ippolito, T. Ngo, S. Litch, J.Eno, J. Golab, N. 
Vanderschaaf, and J. Kathle, “2.2 W, 80 MHz superscalar RISC 
processor,”IEEE J.Solid-State Circuits, vol. 29, pp. 1440–
1454.,1994. 

 


